FINEST MINERAL ADDITIVES

Abstract

Highly variable and ubiquitous FINEST mineral additives in plastics limit high-quality recycling and cause environmental issues and human toxicity. FINEST mineral additives develops and demonstrates mixed mineral / plastic waste recycling value chains by combining pyrolysis of mechanically pretreated demolition waste from external thermal insulation composite systems (ETICS) with the processing of recycled cement clinker (RC-Cement) to maximize both, utilization of organics and inorganics as secondary industrial feedstock. The main achievement is a ready-to-transfer demonstration of the generic value chain at TRL 5 level, making use of the pyrolysis pilot plant and the new "R-Zement" calcination pilot plant at KIT. We will evaluate the toxicological risk of waste feedstocks, intermediates, and recycled materials. Finally, a networked concept for waste ETICS is developed, based on an assessment of local/decentral and integrated plastics and mineral fines recycling.

Work Packages

WP1	ETICS	Non-Separables Additives
WP2 g		RC-Cement
WP3 tment		Low Grade Plastics Pvrolvsis
WP4	Mineral Additives	Mineral Fillers (Examples)
WP5	~ 30% Fillers. Flame	Silica Carbon black (precipitated) Titanium dioxide
WP6 luction	Retardants, Reinforcement	Calcium carbonate 0,001 0,01 0,1 1 10 100 1000 Mean Size (microns)
	WP1 WP2 WP3 tment WP4 WP5	WP1 WP2 g WP3 tment WP4 WP4 WP4 WP4 WP4 WP4 WP4 WP5 WP5 WP5 WP5 WP5 WP6 Uction WP6 Uction

FINEST RESEARCH SCHOOL The FINEST Research School aims at an excellent education of postgraduate students in the field of resource recovery. The education addresses multiple disciplines, and explicitly includes capabilities in inter- and transdisciplinary research.

FINEST MINERAL ADDITIVES is a Core Project within the overarching project FINEST which addresses the use and management of finest particulate anthropogenic material flows in a sustainable circular economy.

Funding KIT:

1.3 Mio. € HELMHOLTZ

Partner:

Duration: July 2022 – June 2027

Contact:

Prof. Dr.-Ing. Dieter Stapf, Head of Institute for Technical Chemistry (ITC), Chair of High Temperature Process Engineering, Dieter.Stapf@kit.edu